EconPapers    
Economics at your fingertips  
 

Fault-tolerant AI-driven Intrusion Detection System for the Internet of Things

Faiza Medjek, Djamel Tandjaoui, Nabil Djedjig and Imed Romdhani

International Journal of Critical Infrastructure Protection, 2021, vol. 34, issue C

Abstract: Internet of Things (IoT) has emerged as a key component of all advanced critical infrastructures. However, with the challenging nature of IoT, new security breaches have been introduced, especially against the Routing Protocol for Low-power and Lossy Networks (RPL). Artificial-Intelligence-based technologies can be used to provide insights to deal with IoT’s security issues. In this paper, we describe the initial stages of developing, a new Intrusion Detection System using Machine Learning (ML) to detect routing attacks against RPL. We first simulate the routing attacks and capture the traffic for different topologies. We then process the traffic and generate large 2-class and multi-class datasets. We select a set of significant features for each attack, and we use this set to train different classifiers to make the IDS. The experiments with 5-fold cross-validation demonstrated that decision tree (DT), random forests (RF), and K-Nearest Neighbours (KNN) achieved good results of more than 99% value for accuracy, precision, recall, and F1-score metrics, and RF has achieved the lowest fitting time. On the other hand, Deep Learning (DL) model, MLP, Naïve Bayes (NB), and Logistic Regression (LR) have shown significantly lower performance.

Keywords: RPL security; IoT security; IDS; Machine Learning; Deep Learning; Critical infrastructure (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1874548221000287
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ijocip:v:34:y:2021:i:c:s1874548221000287

DOI: 10.1016/j.ijcip.2021.100436

Access Statistics for this article

International Journal of Critical Infrastructure Protection is currently edited by Leon Strous

More articles in International Journal of Critical Infrastructure Protection from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ijocip:v:34:y:2021:i:c:s1874548221000287