Excellence networks in science: A Web-based application based on Bayesian multilevel logistic regression (BMLR) for the identification of institutions collaborating successfully
Lutz Bornmann (),
Moritz Stefaner,
Felix de Moya Anegón and
Rüdiger Mutz
Journal of Informetrics, 2016, vol. 10, issue 1, 312-327
Abstract:
In this study we present an application which can be accessed via www.excellence-networks.net and which represents networks of scientific institutions worldwide. The application is based on papers (articles, reviews and conference papers) published between 2007 and 2011. It uses (network) data, on which the SCImago Institutions Ranking is based (Scopus data from Elsevier). Using this data, institutional networks have been estimated with statistical models (Bayesian multilevel logistic regression, BMLR) for a number of Scopus subject areas. Within single subject areas, we have investigated and visualized how successfully overall an institution (reference institution) has collaborated (compared to all the other institutions in a subject area), and with which other institutions (network institutions) a reference institution has collaborated particularly successfully. The “best paper rate” (statistically estimated) was used as an indicator for evaluating the collaboration success of an institution. This gives the proportion of highly cited papers from an institution, and is considered generally as an indicator for measuring impact in bibliometrics.
Keywords: Citation network; Best paper rate; Co-authorship; Collaboration (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157715301152
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:10:y:2016:i:1:p:312-327
DOI: 10.1016/j.joi.2016.01.005
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().