Are the discretised lognormal and hooked power law distributions plausible for citation data?
Mike Thelwall
Journal of Informetrics, 2016, vol. 10, issue 2, 454-470
Abstract:
There is no agreement over which statistical distribution is most appropriate for modelling citation count data. This is important because if one distribution is accepted then the relative merits of different citation-based indicators, such as percentiles, arithmetic means and geometric means, can be more fully assessed. In response, this article investigates the plausibility of the discretised lognormal and hooked power law distributions for modelling the full range of citation counts, with an offset of 1. The citation counts from 23 Scopus subcategories were fitted to hooked power law and discretised lognormal distributions but both distributions failed a Kolmogorov–Smirnov goodness of fit test in over three quarters of cases. The discretised lognormal distribution also seems to have the wrong shape for citation distributions, with too few zeros and not enough medium values for all subjects. The cause of poor fits could be the impurity of the subject subcategories or the presence of interdisciplinary research. Although it is possible to test for subject subcategory purity indirectly through a goodness of fit test in theory with large enough sample sizes, it is probably not possible in practice. Hence it seems difficult to get conclusive evidence about the theoretically most appropriate statistical distribution.
Keywords: Citation distributions; Hooked power law; Discretised lognormal distribution (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157716300074
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:10:y:2016:i:2:p:454-470
DOI: 10.1016/j.joi.2016.03.001
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().