EconPapers    
Economics at your fingertips  
 

A data analytic approach to quantifying scientific impact

Xuanyu Cao, Yan Chen and K.J. Ray Liu

Journal of Informetrics, 2016, vol. 10, issue 2, 471-484

Abstract: Citation is perhaps the mostly used metric to evaluate the scientific impact of papers. Various measures of the scientific impact of researchers and journals rely heavily on the citations of papers. Furthermore, in many practical applications, people may need to know not only the current citations of a paper, but also a prediction of its future citations. However, the complex heterogeneous temporal patterns of the citation dynamics make the predictions of future citations rather difficult. The existing state-of-the-art approaches used parametric methods that require long period of data and have poor performance on some scientific disciplines. In this paper, we present a simple yet effective and robust data analytic method to predict future citations of papers from a variety of disciplines. With rather short-term (e.g., 3 years after the paper is published) citation data, the proposed approach can give accurate estimate of future citations, outperforming state-of-the-art prediction methods significantly. Extensive experiments confirm the robustness of the proposed approach across various journals of different disciplines.

Keywords: Citation prediction; Data analytic approach (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157715301346
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:10:y:2016:i:2:p:471-484

DOI: 10.1016/j.joi.2016.02.006

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:10:y:2016:i:2:p:471-484