Generation of topic evolution trees from heterogeneous bibliographic networks
Scott Jensen,
Xiaozhong Liu,
Yingying Yu and
Staša Milojevic
Journal of Informetrics, 2016, vol. 10, issue 2, 606-621
Abstract:
The volume of the existing research literature is such it can make it difficult to find highly relevant information and to develop an understanding of how a scientific topic has evolved. Prior research on topic evolution has often leveraged refinements to Latent Dirichlet Allocation (LDA) to identify emerging topics. However, such methods do not answer the question of which studies contributed to the evolution of a topic. In this paper we show that meta-paths over a heterogeneous bibliographic network (consisting of papers, authors and venues) can be used to identify the network elements that made the greatest contributions to a topic. In particular, by adding derived edges that capture the contribution of papers, authors, and venues to a topic (using PageRank algorithm), a restricted meta-path over the bibliographic network can be used to restrict the evolution of topics to the context of interest to a researcher. We use such restricted meta-paths to construct a topic evolution tree that can provide researchers with a web-based visualization of the evolution of a scientific topic in the context of interest to them. Compared to baseline networks without restrictions, we find that restricted networks provide more useful topic evolution trees.
Keywords: Topic evolution; Heterogeneous bibliographic network; Meta-path; Visualization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157715302145
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:10:y:2016:i:2:p:606-621
DOI: 10.1016/j.joi.2016.04.002
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().