Recommendation of scholarly venues based on dynamic user interests
Hamed Alhoori and
Richard Furuta
Journal of Informetrics, 2017, vol. 11, issue 2, 553-563
Abstract:
The ever-growing number of venues publishing academic work makes it difficult for researchers to identify venues that publish data and research most in line with their scholarly interests. A solution is needed, therefore, whereby researchers can identify information dissemination pathways in order to both access and contribute to an existing body of knowledge. In this study, we present a system to recommend scholarly venues rated in terms of relevance to a given researcher’s current scholarly pursuits and interests. We collected our data from an academic social network and modeled researchers’ scholarly reading behavior in order to propose a new and adaptive implicit rating technique for venues. We present a way to recommend relevant, specialized scholarly venues using these implicit ratings that can provide quick results, even for new researchers without a publication history and for emerging scholarly venues that do not yet have an impact factor. We performed a large-scale experiment with real data to evaluate the current scholarly recommendation system and showed that our proposed system achieves better results than the baseline. The results provide important up-to-the-minute signals that compared with post-publication usage-based metrics represent a closer reflection of a researcher’s interests.
Keywords: Recommender system; User modeling; Collaborative filtering; Scholarly communication; Social media; Altmetrics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157716303406
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:11:y:2017:i:2:p:553-563
DOI: 10.1016/j.joi.2017.03.006
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().