Deriving technology intelligence from patents: Preposition-based semantic analysis
Jaehyeong An,
Kyuwoong Kim,
Letizia Mortara and
Sungjoo Lee
Journal of Informetrics, 2018, vol. 12, issue 1, 217-236
Abstract:
Patents are one of the most reliable sources of technology intelligence, and the true value of patent analysis stems from its capability of describing the content of technology based on the relationships between keywords. To date a number of techniques for analyzing the information contained in patent documents that focus on the relationships between keywords have been suggested. However, a drawback of the existing keyword approaches is that they cannot yet determine the types of relationships between the keywords. This study proposes a novel approach based on preposition semantic analysis network which overcomes the limitations of the existing keywords-based network analysis and demonstrates its potential through an application. A preposition is a word that defines the relationship between two neighboring words, and, in the case of patents, prepositions aid in revealing the relationships between keywords related to technologies. To demonstrate the approach, patents regarding an electric vehicle were employed. 13 prepositions were identified which could be used to define 5 relationships between neighboring technological terms: “inclusion (utilization),” “objective (purpose),” “effect,” “process,” and “likeness.” The proposed approach is expected to improve the usability of keyword-based patent analyses and support more elaborate studies on patent documents.
Keywords: Technology intelligence; Technology search; Technology trends; Patent analysis; Semantic; Preposition; Text mining; Key-words; Text mining (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157716303777
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:12:y:2018:i:1:p:217-236
DOI: 10.1016/j.joi.2018.01.001
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().