EconPapers    
Economics at your fingertips  
 

Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network

Inchae Park and Byungun Yoon

Journal of Informetrics, 2018, vol. 12, issue 4, 1199-1222

Abstract: As technological convergence has recently become a mainstream innovation trend, technological opportunities need to be explored in heterogeneous technology fields. Most of the previous convergence studies have taken a retrospective view in measuring the degree of convergence and monitoring the converging trends. This paper proposes a quantitative future-oriented approach to technological opportunity discovery for convergence using patent information. In a future-oriented approach, technological opportunities for convergence are suggested by predicting potential technological knowledge flows (TKFs) between heterogeneous fields. The potential TKFs are predicted by a link prediction method in a directed network, which is suggested in this paper to represent the direction of the predicted TKFs by adapting the concept of bibliographic coupling and edge-betweenness centrality. Converging technological opportunities are proposed as incremental and radical technological opportunities by extracting the potential increased knowledge flow links and emerging knowledge flow links. Moreover, the direction and themes of the predicted potential TKFs are provided as technological opportunities for convergence. As an illustration of the proposed method, the technological opportunities between biotechnology (BT) and information technology (IT) are explored. Firms and researchers can use the proposed method to seek out new technological opportunities from various technologies so that R&D policymakers can plan new R&D projects on technological convergence.

Keywords: Technological opportunity discovery; Technological convergence; Link prediction; Patent citation analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157718300907
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:12:y:2018:i:4:p:1199-1222

DOI: 10.1016/j.joi.2018.09.007

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:12:y:2018:i:4:p:1199-1222