EconPapers    
Economics at your fingertips  
 

Predicting the citation counts of individual papers via a BP neural network

Xuanmin Ruan, Yuanyang Zhu, Jiang Li and Ying Cheng

Journal of Informetrics, 2020, vol. 14, issue 3

Abstract: Predicting the citation counts of academic papers is of considerable significance to scientific evaluation. This study used a four-layer Back Propagation (BP) neural network model to predict the five-year citations of 49,834 papers in the library, information and documentation field indexed by the CSSCI database and published from 2000 to 2013. We extracted six paper features, two journal features, nine author features, eight reference features, and five early citation features to make the prediction. The empirical experiments showed that the performance of the BP neural network is significantly better than those of the six baseline models. In terms of the prediction effect, the accuracy of the model at predicting infrequently cited papers was higher than that for frequently cited ones. We determined that five essential features have significant effects on the prediction performance of the model, i.e., ‘citations in the first two years’, ‘first-cited age’, ‘paper length’, ‘month of publication’, and ‘self-citations of journals’, and the other features contribute only slightly to the prediction.

Keywords: Citation prediction; Neural network; XGBoost; Linear regression (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157719303979
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:14:y:2020:i:3:s1751157719303979

DOI: 10.1016/j.joi.2020.101039

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:14:y:2020:i:3:s1751157719303979