A sensitivity analysis of factors influential to the popularity of shared data in data repositories
Qing Xie,
Jiamin Wang,
Giyeong Kim,
Soobin Lee and
Min Song
Journal of Informetrics, 2021, vol. 15, issue 3
Abstract:
With their rapid development, data repositories usually provide abundant metadata—including data types, keywords, downloads, stars, forks, and citations—along with the data content. These rich metadata can be used as valuable resources to study the factors that facilitate data sharing. However, few previous studies have attempted to study which metadata are correlated with the popularity of data. This study overcomes these issues by extracting the major factors for each dataset from a well-known data repository, the UCI Machine Learning Repository, and a popular open-source software repository, GitHub. We trained a neural network model and measured the influence of these features on quantified popularity metrics using the weight product of connecting neurons. We grouped the UCI factors into two categories (intrinsic and extrinsic) and the GitHub factors into three categories (intrinsic, extrinsic, and web-related) to analyze their influence on popularity at each level. The quantified influence was used to predict the popularity of the data or software. We conducted a statistical analysis to explore the relationship between these factors and popularity with five different domains (life sciences, physical sciences, computer science/engineering, social sciences, and others) for the UCI repository. This study’s findings contribute to understanding the factors that affect the popularity of open datasets or software for providing guidance on data sharing, reuse, and organization.
Keywords: Data repository; Sensitivity analysis; Neural network; UCI repository; GitHub (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157721000134
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:15:y:2021:i:3:s1751157721000134
DOI: 10.1016/j.joi.2021.101142
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().