Utilizing citation network structure to predict paper citation counts: A Deep learning approach
Qihang Zhao and
Xiaodong Feng
Journal of Informetrics, 2022, vol. 16, issue 1
Abstract:
With the advancement of science and technology, the number of academic papers published each year has increased almost exponentially. While a large number of research papers highlight the prosperity of science and technology, they also give rise to some problems. As we know, academic papers are the most intuitive embodiment of the research results of scholars, which can reflect the level of researchers. It is also the standard for evaluation and decision-making of them, such as promotion and allocation of funds. Therefore, how to measure the quality of an academic paper is very critical. The most common standard for measuring the quality of academic papers is the number of citation counts of them, as this indicator is widely used in the evaluation of scientific publications. It also serves as the basis for many other indicators (such as the h-index). Therefore, it is very important to be able to accurately predict the citation counts of academic papers. To improve the effective of citation counts prediction, we try to solve the citation counts prediction problem from the perspective of information cascade prediction and take advantage of deep learning techniques. Thus, we propose an end-to-end deep learning framework (DeepCCP), consisting of graph structure representation and recurrent neural network modules. DeepCCP directly uses the citation network formed in the early stage of the paper as the input, and outputs the citation counts of the corresponding paper after a period of time. It only exploits the structure and temporal information of the citation network, and does not require other additional information. According to experiments on two real academic citation datasets, DeepCCP is shown superior to the state-of-the-art methods in terms of the accuracy of citation count prediction.
Keywords: Citation counts prediction; Information cascades; Deep learning; Recurrent neural network (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157721001061
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:16:y:2022:i:1:s1751157721001061
DOI: 10.1016/j.joi.2021.101235
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().