EconPapers    
Economics at your fingertips  
 

MatrixSim: A new method for detecting the evolution paths of research topics

Xiaoguang Wang, Jing He, Han Huang and Hongyu Wang

Journal of Informetrics, 2022, vol. 16, issue 4

Abstract: In this study, MatrixSim, a new method for detecting the evolution paths of research topics based on matrix similarity, was proposed. In the analysis of research topic evolution with the help of co-word networks, in contrast to traditional methods of topic evolution path detection, such as cosine similarity and edge similarity, MatrixSim is based on the local community structure of topic communities in co-word networks and considers the similarity of research topics in both nodes and edges, that is, words and inter-word relations. Using the library and information science field as an example, two sets of experiments were designed for topic similarity detection and subject-specific research topic evolution analysis to evaluate and verify the performance of MatrixSim in detecting the evolution paths of research topics and its validity and feasibility in research topic evolution analysis. The results confirm that MatrixSim performs well in detecting the evolution paths of research topics. It can correlate important research topics, help describe the research development process in scientific fields, reveal the internal evolutionary features of research topics, and thus discover and track the research frontiers in scientific fields. This study provides significant methodological support for researchers conducting prospective research activities.

Keywords: Research topic evolution; Matrix similarity; Evolution path detection; MatrixSim; Co-word network (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157722000955
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:16:y:2022:i:4:s1751157722000955

DOI: 10.1016/j.joi.2022.101343

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:16:y:2022:i:4:s1751157722000955