EconPapers    
Economics at your fingertips  
 

Time gap analysis by the topic model-based temporal technique

Do-Heon Jeong and Min Song

Journal of Informetrics, 2014, vol. 8, issue 3, 776-790

Abstract: This study proposes a temporal analysis method to utilize heterogeneous resources such as papers, patents, and web news articles in an integrated manner. We analyzed the time gap phenomena between three resources and two academic areas by conducting text mining-based content analysis. To this end, a topic modeling technique, Latent Dirichlet Allocation (LDA) was used to estimate the optimal time gaps among three resources (papers, patents, and web news articles) in two research domains. The contributions of this study are summarized as follows: firstly, we propose a new temporal analysis method to understand the content characteristics and trends of heterogeneous multiple resources in an integrated manner. We applied it to measure the exact time intervals between academic areas by understanding the time gap phenomena. The results of temporal analysis showed that the resources of the medical field had more up-to-date property than those of the computer field, and thus prompter disclosure to the public. Secondly, we adopted a power-law exponent measurement and content analysis to evaluate the proposed method. With the proposed method, we demonstrate how to analyze heterogeneous resources more precisely and comprehensively.

Keywords: Text mining; Topic modeling; Latent Dirichlet Allocation (LDA); Content analysis; Temporal analysis; Multiple resources (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157714000650
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:8:y:2014:i:3:p:776-790

DOI: 10.1016/j.joi.2014.07.005

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:8:y:2014:i:3:p:776-790