More precise methods for national research citation impact comparisons
Ruth Fairclough and
Mike Thelwall
Journal of Informetrics, 2015, vol. 9, issue 4, 895-906
Abstract:
Governments sometimes need to analyse sets of research papers within a field in order to monitor progress, assess the effect of recent policy changes, or identify areas of excellence. They may compare the average citation impacts of the papers by dividing them by the world average for the field and year. Since citation data is highly skewed, however, simple averages may be too imprecise to robustly identify differences within, rather than across, fields. In response, this article introduces two new methods to identify national differences in average citation impact, one based on linear modelling for normalised data and the other using the geometric mean. Results from a sample of 26 Scopus fields between 2009 and 2015 show that geometric means are the most precise and so are recommended for smaller sample sizes, such as for individual fields. The regression method has the advantage of distinguishing between national contributions to internationally collaborative articles, but has substantially wider confidence intervals than the geometric mean, undermining its value for any except the largest sample sizes.
Keywords: Scientometrics; Citation analysis; Research evaluation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157715300894
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:9:y:2015:i:4:p:895-906
DOI: 10.1016/j.joi.2015.09.005
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().