Forecasting mortality with international linkages: A global vector-autoregression approach
Hong Li () and
Yanlin Shi
Insurance: Mathematics and Economics, 2021, vol. 100, issue C, 59-75
Abstract:
This paper proposes a Global Vector Autoregression (GVAR) mortality model to simultaneously model and forecast multi-population mortality dynamics. The proposed GVAR model decomposes the global regression model into population-wise local systems. Each local system consists of an intra-population autoregressive component and a small set of global factors, which contain systematic mortality information of all populations. Such a decomposition substantially reduces the extra estimation cost of including new populations compared to unconstrained VAR models, and makes the GVAR model an efficient tool for analyzing the joint mortality dynamics of a large group of populations. Further, under fairly general assumptions, the proposed GVAR model could generate coherent mortality projections between any two ages in any two populations. Using single-age mortality data of 15 low-mortality countries, we find that the global factors have substantial explanatory and forecasting power of mortality changes of individual populations, and the proposed GVAR model could produce satisfying mortality forecasts under various settings.
Keywords: Global vector-autoregression; Coherent mortality forecasting; Multiple populations; Co-integration; Hyperbolic memory process (search for similar items in EconPapers)
JEL-codes: J11 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668721000755
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:100:y:2021:i:c:p:59-75
DOI: 10.1016/j.insmatheco.2021.04.006
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().