Optimal entry decision of unemployment insurance under partial information
Jie Xing,
Jingtang Ma and
Wensheng Yang
Insurance: Mathematics and Economics, 2023, vol. 110, issue C, 31-52
Abstract:
The aim of this paper is to study the optimal time for the individual to join an unemployment insurance scheme which is intended to protect workers against the consequences of job loss and to encourage the unemployed workers to find a new job as early as possible. The wage dynamic is described by a geometric Brownian motion model under drift uncertainty and the problem is a kind of two-dimensional degenerate optimal stopping problems which is hard to analyze. The optimal time of decision for the workers is given by the first time at which the wage process hits the free boundary which therefore plays a key role in solving the problem. This paper analyzes the monotonicity and continuity of the free boundary and derives a nonlinear integral equation for it. For a particular case the closed-form formula of free boundary is obtained and for the general case the free boundary is solved by the numerical solution of the nonlinear integral equation. The key in the analysis is to convert the degenerate problem into the non-degenerate one using the probability approach.
Keywords: Unemployment insurance; Drift uncertainty; Free boundary; Optimal stopping; Integral equation (search for similar items in EconPapers)
JEL-codes: C61 D91 D92 G11 G12 G22 (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668723000112
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:110:y:2023:i:c:p:31-52
DOI: 10.1016/j.insmatheco.2023.02.002
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).