Risk quantization by magnitude and propensity
Olivier P. Faugeras and
Gilles Pagès
Insurance: Mathematics and Economics, 2024, vol. 116, issue C, 134-147
Abstract:
We propose a novel approach in the assessment of a random risk variable X by introducing magnitude-propensity risk measures (mX,pX). This bivariate measure intends to account for the dual aspect of risk, where the magnitudes x of X tell how high are the losses incurred, whereas the probabilities P(X=x) reveal how often one has to expect to suffer such losses. The basic idea is to simultaneously quantify both the severity mX and the propensity pX of the real-valued risk X. This is to be contrasted with traditional univariate risk measures, like VaR or CVaR, which typically conflate both effects. In its simplest form, (mX,pX) is obtained by mass transportation in Wasserstein metric of the law of X to a two-points {0,mX} discrete distribution with mass pX at mX. The approach can also be formulated as a constrained optimal quantization problem. This allows for an informative comparison of risks on both the magnitude and propensity scales. Several examples illustrate the usefulness of the proposed approach. Some variants, extensions and applications are also considered.
Keywords: Magnitude-propensity; Risk measure; Mass transportation; Optimal quantization; Risk management; Portfolio analysis (search for similar items in EconPapers)
JEL-codes: C02 C19 D81 G22 G32 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668724000325
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:116:y:2024:i:c:p:134-147
DOI: 10.1016/j.insmatheco.2024.02.005
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().