EconPapers    
Economics at your fingertips  
 

Tails of random sums of a heavy-tailed number of light-tailed terms

Christian Y. Robert and Johan Segers

Insurance: Mathematics and Economics, 2008, vol. 43, issue 1, 85-92

Abstract: The tail of the distribution of a sum of a random number of independent and identically distributed nonnegative random variables depends on the tails of the number of terms and of the terms themselves. This situation is of interest in the collective risk model, where the total claim size in a portfolio is the sum of a random number of claims. If the tail of the claim number is heavier than the tail of the claim sizes, then under certain conditions the tail of the total claim size does not change asymptotically if the individual claim sizes are replaced by their expectations. The conditions allow the claim number distribution to be of consistent variation or to be in the domain of attraction of a Gumbel distribution with a mean excess function that grows to infinity sufficiently fast. Moreover, the claim number is not necessarily required to be independent of the claim sizes.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00108-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:43:y:2008:i:1:p:85-92

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:43:y:2008:i:1:p:85-92