Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness
Paul Embrechts,
Johanna Neslehová and
Mario V. Wüthrich
Insurance: Mathematics and Economics, 2009, vol. 44, issue 2, 164-169
Abstract:
Mainly due to new capital adequacy standards for banking and insurance, an increased interest exists in the aggregation properties of risk measures like Value-at-Risk (VaR). We show how VaR can change from sub to superadditivity depending on the properties of the underlying model. Mainly, the switch from a finite to an infinite mean model gives a completely different asymptotic behaviour. Our main result proves a conjecture made in Barbe et al. [Barbe, P., Fougères, A.L., Genest, C., 2006. On the tail behavior of sums of dependent risks. ASTIN Bull. 36(2), 361-374].
Keywords: Value-at-Risk; Subadditivity; Dependence; structure; Archimedean; copula; Aggregation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00099-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:44:y:2009:i:2:p:164-169
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().