Comparison of three semiparametric methods for estimating dependence parameters in copula models
Ivan Kojadinovic and
Jun Yan
Insurance: Mathematics and Economics, 2010, vol. 47, issue 1, 52-63
Abstract:
Three semiparametric methods for estimating dependence parameters in copula models are compared, namely maximum pseudo-likelihood estimation and the two method-of-moment approaches based on the inversion of Spearman's rho and Kendall's tau. For each of these three asymptotically normal estimators, an estimator of their asymptotic (co)variance is stated in three different situations, namely the bivariate one-parameter case, the multivariate one-parameter case and the multivariate multiparameter case. An extensive Monte Carlo study is carried out to compare the finite-sample performance of the three estimators under consideration in these three situations. In the one-parameter case, it involves up to six bivariate and four-variate copula families, and up to five levels of dependence. In the multiparameter case, attention is restricted to trivariate and four-variate normal and t copulas. The maximum pseudo-likelihood estimator appears as the best choice in terms of mean square error in all situations except for small and weakly dependent samples. It is followed by the method-of-moment estimator based on Kendall's tau, which overall appears to be significantly better than its analogue based on Spearman's rho. The simulation results are complemented by asymptotic relative efficiency calculations. The numerical computation of Spearman's rho, Kendall's tau and their derivatives in the case of copula families for which explicit expressions are not available is also investigated.
Keywords: Pseudo-likelihood; Pseudo-observations; Ranks; Spearman'; s; rho; Kendall'; s; tau; Asymptotic; relative; efficiency; Numerical; approximation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00036-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:47:y:2010:i:1:p:52-63
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().