Optimal dividend problem with a terminal value for spectrally positive Lévy processes
Chuancun Yin and
Yuzhen Wen
Insurance: Mathematics and Economics, 2013, vol. 53, issue 3, 769-773
Abstract:
In this paper we consider a modified version of the classical optimal dividend problem taking into account both expected dividends and the time value of ruin. We assume that the risk process is modeled by a general spectrally positive Lévy process before dividends are deducted. Using the fluctuation theory of spectrally positive Lévy processes we give an explicit expression of the value function of a barrier strategy. Subsequently we show that a barrier strategy is the optimal strategy among all admissible ones. Our work is motivated by the recent work of Bayraktar, Kyprianou and Yamazaki (2013a).
Keywords: Barrier strategy; Dual model; Optimal dividend strategy; Scale functions; Spectrally positive Lévy process; Stochastic control (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713001522
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:53:y:2013:i:3:p:769-773
DOI: 10.1016/j.insmatheco.2013.09.019
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().