Forecasting mortality for small populations by mixing mortality data
Ales Ahcan,
Darko Medved,
Annamaria Olivieri and
Ermanno Pitacco
Insurance: Mathematics and Economics, 2014, vol. 54, issue C, 12-27
Abstract:
In this paper we address the problem of projecting mortality when data are severely affected by random fluctuations, due in particular to a small sample size, or when data are scanty. Such situations may emerge when dealing with small populations, such as small countries (possibly previously part of a larger country), a specific geographic area of a (large) country, a life annuity portfolio or a pension fund, or when the investigation is restricted to the oldest ages. The critical issues arising from the volatility of data due to the small sample size (especially at the highest ages) may be made worse by missing records; this is the case, for example, of a small country previously part of a larger country, or a specific geographic area of a country, given that in some periods mortality data could have been collected just at an aggregate level.
Keywords: Mortality projections; Mortality trends; Multi-population mortality models (search for similar items in EconPapers)
JEL-codes: G22 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713001674
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:54:y:2014:i:c:p:12-27
DOI: 10.1016/j.insmatheco.2013.10.013
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().