Risk aggregation with dependence uncertainty
Carole Bernard,
Xiao Jiang and
Ruodu Wang
Insurance: Mathematics and Economics, 2014, vol. 54, issue C, 93-108
Abstract:
Risk aggregation with dependence uncertainty refers to the sum of individual risks with known marginal distributions and unspecified dependence structure. We introduce the admissible risk class to study risk aggregation with dependence uncertainty. The admissible risk class has some nice properties such as robustness, convexity, permutation invariance and affine invariance. We then derive a new convex ordering lower bound over this class and give a sufficient condition for this lower bound to be sharp in the case of identical marginal distributions. The results are used to identify extreme scenarios and calculate bounds on Value-at-Risk as well as on convex and coherent risk measures and other quantities of interest in finance and insurance. Numerical illustrations are provided for different settings and commonly-used distributions of risks.
Keywords: Dependence structure; Aggregate risk; Admissible risk; Convex risk measures; TVaR; Convex order; Complete mixability; VaR bounds (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (55)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713001765
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:54:y:2014:i:c:p:93-108
DOI: 10.1016/j.insmatheco.2013.11.005
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().