Asymptotic analysis of risk quantities conditional on ruin for multidimensional heavy-tailed random walks
Jingchen Liu and
Jae-Kyung Woo
Insurance: Mathematics and Economics, 2014, vol. 55, issue C, 1-9
Abstract:
In this paper we consider a multidimensional renewal risk model with regularly varying claims. This model may be used to describe the surplus of an insurance company possessing several lines of business where a large claim possibly puts multiple lines in a risky condition. Conditional on the occurrence of ruin, we develop asymptotic approximations for the average accumulated number of claims leading the process to a rare set, and the expected total amount of shortfalls to this set in finite and infinite horizons. Furthermore, for the continuous time case, asymptotic results regarding the total occupation time of the process in a rare set and time-integrated amount of shortfalls to a rare set are obtained.
Keywords: Multivariate regularly variation; Heavy-tailed increments; Hitting rare set; Lyapunov inequality (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713001935
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:55:y:2014:i:c:p:1-9
DOI: 10.1016/j.insmatheco.2013.11.010
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().