Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape
Nadja Klein,
Michel Denuit,
Stefan Lang and
Thomas Kneib
Insurance: Mathematics and Economics, 2014, vol. 55, issue C, 225-249
Abstract:
Generalized additive models for location, scale and, shape define a flexible, semi-parametric class of regression models for analyzing insurance data in which the exponential family assumption for the response is relaxed. This approach allows the actuary to include risk factors not only in the mean but also in other key parameters governing the claiming behavior, like the degree of residual heterogeneity or the no-claim probability. In this broader setting, the Negative Binomial regression with cell-specific heterogeneity and the zero-inflated Poisson regression with cell-specific additional probability mass at zero are applied to model claim frequencies. New models for claim severities that can be applied either per claim or aggregated per year are also presented. Bayesian inference is based on efficient Markov chain Monte Carlo simulation techniques and allows for the simultaneous estimation of linear effects as well as of possible nonlinear effects, spatial variations and interactions between risk factors within the data set. To illustrate the relevance of this approach, a detailed case study is proposed based on the Belgian motor insurance portfolio studied in Denuit and Lang (2004).
Keywords: Overdispersed count data; Mixed Poisson regression; Zero-inflated Poisson; Negative binomial; Zero-adjusted models; MCMC; Probabilistic forecasts (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668714000183
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:55:y:2014:i:c:p:225-249
DOI: 10.1016/j.insmatheco.2014.02.001
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().