Reducing model risk via positive and negative dependence assumptions
Valeria Bignozzi,
Giovanni Puccetti and
Ludger Rüschendorf
Insurance: Mathematics and Economics, 2015, vol. 61, issue C, 17-26
Abstract:
We give analytical bounds on the Value-at-Risk and on convex risk measures for a portfolio of random variables with fixed marginal distributions under an additional positive dependence structure. We show that assuming positive dependence information in our model leads to reduced dependence uncertainty spreads compared to the case where only marginals information is known. In more detail, we show that in our model the assumption of a positive dependence structure improves the best-possible lower estimate of a risk measure, while leaving unchanged its worst-possible upper risk bounds. In a similar way, we derive for convex risk measures that the assumption of a negative dependence structure leads to improved upper bounds for the risk while it does not help to increase the lower risk bounds in an essential way. As a result we find that additional assumptions on the dependence structure may result in essentially improved risk bounds.
Keywords: Model risk; Dependence uncertainty; Positive dependence; Value-at-Risk; Convex risk measures (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668714001450
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:61:y:2015:i:c:p:17-26
DOI: 10.1016/j.insmatheco.2014.11.004
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().