A modified insurance risk process with uncertainty
Kai Yao and
Zhongfeng Qin
Insurance: Mathematics and Economics, 2015, vol. 62, issue C, 227-233
Abstract:
An insurance risk process is traditionally considered by describing the claim process via a renewal reward process and assuming the total premium to be proportional to the time with a constant ratio. It is usually modeled as a stochastic process such as the compound Poisson process, and historical data are collected and employed to estimate the corresponding parameters of probability distributions. However, there exists the case of lack of data such as for a new insurance product. An alternative way is to estimate the parameters based on experts’ subjective belief and information. Therefore, it is necessary to employ the uncertain process to model the insurance risk process. In this paper, we propose a modified insurance risk process in which both the claim process and the premium process are assumed to be renewal reward processes with uncertain factors. Then we give the inverse uncertainty distribution of the modified process at each time. On this basis, we derive the ruin index which has an explicit expression based on given uncertainty distributions.
Keywords: Insurance risk process; Uncertain variable; Ruin; Ruin index; Uncertainty theory (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016766871500061X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:62:y:2015:i:c:p:227-233
DOI: 10.1016/j.insmatheco.2015.03.029
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().