Risk models with premiums adjusted to claims number
Bo Li,
Weihong Ni and
Corina Constantinescu
Insurance: Mathematics and Economics, 2015, vol. 65, issue C, 94-102
Abstract:
Classical compound Poisson risk models consider the premium rate to be constant. By adjusting the premium rate to the claims history, one can emulate a Bonus–Malus system within the ruin theory context. One way to implement such adjustment is by considering the Poisson parameter to be a continuous random variable and use credibility theory arguments to adjust the premium rate a posteriori. Depending on the defectiveness of this random variable, respectively referred to as ‘unforeseeable’ (defective) versus ‘historical’ (non-defective) risks, one obtains different relations between the ruin probability with constant versus adjusted premium rate. A combination of these two kinds of risks also leads to a relation between the two ruin probabilities, when the a posteriori estimator of the number of claims is carefully chosen. Examples for specific claim sizes are presented throughout the paper.
Keywords: Ruin probability; Mixed Poisson process; Bonus–Malus; Bayesian estimation; Lukacs’ theorem (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715001468
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:65:y:2015:i:c:p:94-102
DOI: 10.1016/j.insmatheco.2015.09.001
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().