Mean–variance asset–liability management under constant elasticity of variance process
Miao Zhang and
Ping Chen
Insurance: Mathematics and Economics, 2016, vol. 70, issue C, 11-18
Abstract:
This paper investigates a mean–variance asset–liability management (ALM) problem under the constant elasticity of variance (CEV) process. The company can invest in n+1 assets: one risk-free bond and n risky stocks. The uncontrollable liability process is modelled by a geometric Brownian motion. The feasibility is studied and potential optimal portfolio is proven to be admissible. We derive the efficient frontier and efficient feedback portfolio in terms of the solutions of two backward stochastic differential equations (BSDEs), which do not admit analytical solutions in general. The closed form solutions are obtained under some special cases. Applying the Monte Carlo simulation, we provide several numerical examples to demonstrate how the efficient frontier is influenced by the relevant parameters.
Keywords: Mean-variance; Asset-liability management; Constant elasticity of variance; Multiple assets; BSDE (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715303012
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:70:y:2016:i:c:p:11-18
DOI: 10.1016/j.insmatheco.2016.05.019
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().