Extremes for coherent risk measures
Alexandru V. Asimit and
Jinzhu Li
Insurance: Mathematics and Economics, 2016, vol. 71, issue C, 332-341
Abstract:
Various concepts appeared in the existing literature to evaluate the risk exposure of a financial or insurance firm/subsidiary/line of business due to the occurrence of some extreme scenarios. Many of those concepts, such as Marginal Expected Shortfall or Tail Conditional Expectation, are simply some conditional expectations that evaluate the risk in adverse scenarios and are useful for signaling to a decision-maker the poor performance of its risk portfolio or to identify which sub-portfolio is likely to exhibit a massive downside risk. We investigate the latter risk under the assumption that it is measured via a coherent risk measure, which obviously generalizes the idea of only taking the expectation of the downside risk. Multiple examples are given and our numerical illustrations show how the asymptotic approximations can be used in the capital allocation exercise. We have concluded that the expectation of the downside risk does not fairly take into account the individual risk contribution when allocating the VaR-based regulatory capital, and thus, more conservative risk measurements are recommended. Finally, we have found that more conservative risk measurements do not improve the fairness of the cost of capital allocation when the uncertainty with parameter estimation is present, even at a very high level.
Keywords: Capital allocation; Coherent/Distortion risk measure; Conditional tail expectation; Extreme value theory; Marginal expected shortfall; Rapid variation; Regular variation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668716302803
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:71:y:2016:i:c:p:332-341
DOI: 10.1016/j.insmatheco.2016.10.003
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().