On a family of risk measures based on largest claims
A. Castaño-Martínez,
G. Pigueiras and
M.A. Sordo
Insurance: Mathematics and Economics, 2019, vol. 86, issue C, 92-97
Abstract:
Given a set of n≥2 independent and identically distributed claims, the expected average of the n−i largest claims, with 0≤i≤n−1, is shown to be a distortion risk measure with concave distortion function that can be represented in terms of mixtures of tail value-at-risks with beta mixing distributions. This result allows to interpret the tail value-at-risk in terms of the largest claims of a portfolio of independent claims. As an application, we provide sufficient conditions for stochastic comparisons of premiums in the context of large claims reinsurance.
Keywords: Risk measure; Premium principle; Order statistics; Stop-loss order; Excess-wealth order; Reinsurance (search for similar items in EconPapers)
JEL-codes: G22 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016766871830115X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:86:y:2019:i:c:p:92-97
DOI: 10.1016/j.insmatheco.2019.02.003
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().