EconPapers    
Economics at your fingertips  
 

Structural instability and predictability

Neluka Devpura, Paresh Kumar Narayan and Susan Sunila Sharma

Journal of International Financial Markets, Institutions and Money, 2019, vol. 63, issue C

Abstract: We propose a structural break predictive regression model that accounts for predictor persistency, endogeneity, heteroscedasticity, and a structural break. Monte Carlo (MC) simulations indicate that this test performs satisfactorily compared to competitor estimators. We employ a popular U.S. data set (the period January 1927 to December 2016) that includes stock market returns and multiple predictors. We show, consistent with the MC results, evidence of a structural break. Our analysis reveals that a structural break–based predictive regression model fits the data reasonably well in predicting stock price returns.

Keywords: Structural break; Predictability; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1042443119300150
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfin:v:63:y:2019:i:c:s1042443119300150

DOI: 10.1016/j.intfin.2019.101145

Access Statistics for this article

Journal of International Financial Markets, Institutions and Money is currently edited by I. Mathur and C. J. Neely

More articles in Journal of International Financial Markets, Institutions and Money from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfin:v:63:y:2019:i:c:s1042443119300150