Structural instability and predictability
Neluka Devpura,
Paresh Kumar Narayan and
Susan Sunila Sharma
Journal of International Financial Markets, Institutions and Money, 2019, vol. 63, issue C
Abstract:
We propose a structural break predictive regression model that accounts for predictor persistency, endogeneity, heteroscedasticity, and a structural break. Monte Carlo (MC) simulations indicate that this test performs satisfactorily compared to competitor estimators. We employ a popular U.S. data set (the period January 1927 to December 2016) that includes stock market returns and multiple predictors. We show, consistent with the MC results, evidence of a structural break. Our analysis reveals that a structural break–based predictive regression model fits the data reasonably well in predicting stock price returns.
Keywords: Structural break; Predictability; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1042443119300150
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfin:v:63:y:2019:i:c:s1042443119300150
DOI: 10.1016/j.intfin.2019.101145
Access Statistics for this article
Journal of International Financial Markets, Institutions and Money is currently edited by I. Mathur and C. J. Neely
More articles in Journal of International Financial Markets, Institutions and Money from Elsevier
Bibliographic data for series maintained by Catherine Liu ().