Forecasting outcomes in tennis matches using within-match betting markets
Stephen Easton and
Katherine Uylangco
International Journal of Forecasting, 2010, vol. 26, issue 3, 564-575
Abstract:
Klaassen and Magnus (2003) provide a model of the probability of a given player winning a tennis match, with the prediction updated on a point-by-point basis. This paper provides a point-by-point comparison of that model with the probability of a given player winning the match, as implied by betting odds. The predictions implied by the betting odds match the model predictions closely, with an extremely high correlation being found between the model and the betting market. The results for both men's and women's matches also suggest that there is a high level of efficiency in the betting market, demonstrating that betting markets are a good predictor of the outcomes of tennis matches. The significance of service breaks and service being held is anticipated up to four points prior to the end of the game. However, the tendency of players to lose more points than would be expected after conceding a break of service is not captured instantaneously in betting odds. In contrast, there is no evidence of a biased reaction to a player winning a game on service.
Keywords: Prediction; markets; Market; efficiency; Market; microstructure; Betting; exchange; Betfair (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00172-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:26:y::i:3:p:564-575
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().