EconPapers    
Economics at your fingertips  
 

Forecasting with dimension switching VARs

Gary Koop

International Journal of Forecasting, 2014, vol. 30, issue 2, 280-290

Abstract: This paper develops methods for VAR forecasting when the researcher is uncertain about which variables enter the VAR, and the dimension of the VAR may be changing over time. It considers the case where there are N variables which might potentially enter a VAR and the researcher is interested in forecasting N∗ of them. Thus, the researcher is faced with 2N−N∗ potential VARs. If N is large, conventional Bayesian methods can be infeasible due to the computational burden of dealing with a huge model space. Allowing for the dimension of the VAR to change over time only increases this burden. In light of these considerations, this paper uses computationally practical approximations adapted from the dynamic model averaging literature in order to develop methods for dynamic dimension selection (DDS) in VARs. We then show the benefits of DDS in a macroeconomic forecasting application. In particular, DDS switches between different parsimonious VARs and forecasts appreciably better than various small and large dimensional VARs.

Keywords: Bayesian VAR; Model selection; Variable selection; Predictive likelihood (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207013001453
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:2:p:280-290

DOI: 10.1016/j.ijforecast.2013.09.005

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:30:y:2014:i:2:p:280-290