Bootstrap multi-step forecasts of non-Gaussian VAR models
Diego Fresoli,
Esther Ruiz () and
Lorenzo Pascual
International Journal of Forecasting, 2015, vol. 31, issue 3, 834-848
Abstract:
In this paper, we establish the asymptotic validity and analyse the finite sample performance of a simple bootstrap procedure for constructing multi-step multivariate forecast densities in the context of non-Gaussian unrestricted VAR models. This bootstrap procedure avoids the backward representation, and, as a consequence, can be used to obtain multivariate forecast densities in, for example, VARMA or VAR-GARCH models. In the context of bivariate stationary VAR(p) models, we show that its finite sample properties are comparable to those of alternatives based on the backward representation. The bootstrap procedure is also implemented in a VAR-DCC model which lacks a backward representation. Finally, joint forecast densities of US quarterly inflation, unemployment and GDP growth are obtained.
Keywords: Bias correction; DCC model; Forecast density; Forecast regions; High density regions; Lag order uncertainty; Multivariate forecast; Resampling methods (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207014000892
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:31:y:2015:i:3:p:834-848
DOI: 10.1016/j.ijforecast.2014.04.001
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().