Calibrating ensemble forecasting models with sparse data in the social sciences
Jacob M. Montgomery,
Florian M. Hollenbach and
Michael D. Ward
International Journal of Forecasting, 2015, vol. 31, issue 3, 930-942
Abstract:
We consider ensemble Bayesian model averaging (EBMA) in the context of small-n prediction tasks in the presence of large numbers of component models. With large numbers of observations for calibrating ensembles, relatively small numbers of component forecasts, and low rates of missingness, the standard approach to calibrating forecasting ensembles introduced by Raftery et al. (2005) performs well. However, data in the social sciences generally do not fulfill these requirements. In these circumstances, EBMA models may miss-weight components, undermining the advantages of the ensemble approach to prediction. In this article, we explore these issues and introduce a “wisdom of the crowds” parameter to the standard EBMA framework, which improves its performance. Specifically, we show that this solution improves the accuracy of EBMA forecasts in predicting the 2012 US presidential election and the US unemployment rate.
Keywords: Bayesian methods; Election forecasting; Labour market forecasting; Calibration; Ensembles (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207014001010
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:31:y:2015:i:3:p:930-942
DOI: 10.1016/j.ijforecast.2014.08.001
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().