EconPapers    
Economics at your fingertips  
 

Under-performing, over-performing, or just performing? The limitations of fundamentals-based presidential election forecasting

Benjamin E. Lauderdale and Drew Linzer

International Journal of Forecasting, 2015, vol. 31, issue 3, 965-979

Abstract: U.S. presidential election forecasts are of widespread interest to political commentators, campaign strategists, research scientists, and the public. We argue that most fundamentals-based political science forecasts overstate what historical political and economic factors can tell us about the probable outcome of a forthcoming presidential election. Existing approaches generally overlook the uncertainty in coefficient estimates, decisions about model specifications, and the translation from popular vote shares to Electoral College outcomes. We introduce a Bayesian forecasting model for state-level presidential elections that accounts for each of these sources of error, and allows for the inclusion of structural predictors at both the national and state levels. Applying the model to presidential election data from 1952 to 2012, we demonstrate that, for covariates with typical levels of predictive power, the 95% prediction intervals for presidential vote shares should span approximately ±10% at the state level and ±7% at the national level.

Keywords: Electoral forecasting; U.S. presidential elections; Bayesian statistics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207015000102
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:31:y:2015:i:3:p:965-979

DOI: 10.1016/j.ijforecast.2015.03.002

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:31:y:2015:i:3:p:965-979