K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting
Yao Zhang and
Jianxue Wang
International Journal of Forecasting, 2016, vol. 32, issue 3, 1074-1080
Abstract:
Probabilistic forecasts provide quantitative information in relation to energy uncertainty, which is essential for making better decisions on the operation of power systems with an increasing penetration of wind power. On the basis of the k-nearest neighbors algorithm and a kernel density estimator method, this paper presents a general framework for the probabilistic forecasting of renewable energy generation, especially for wind power generation. It is a direct and non-parametric approach. Firstly, the k-nearest neighbors algorithm is used to find the k closest historical examples with characteristics similar to the future weather condition of wind power generation. Secondly, a novel kernel density estimator based on a logarithmic transformation and a boundary kernel is used to construct wind power predictive density based on the k closest historical examples. The effectiveness of this approach has been confirmed on the real data provided for GEFCom2014. The evaluation results show that the proposed approach can provide good quality, reliable probabilistic wind power forecasts.
Keywords: Wind power; Probabilistic forecasting; Point forecasting; k-nearest neighbors; Kernel density estimator; Coordinate descent algorithm (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207015001417
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:3:p:1074-1080
DOI: 10.1016/j.ijforecast.2015.11.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().