Identifying business cycle turning points in real time with vector quantization
Andrea Giusto () and
Jeremy Piger
International Journal of Forecasting, 2017, vol. 33, issue 1, 174-184
Abstract:
We propose a simple machine-learning algorithm known as Learning Vector Quantization (LVQ) for the purpose of identifying new U.S. business cycle turning points quickly in real time. LVQ is used widely for real-time statistical classification in many other fields, but has not previously been applied to the classification of economic variables, to the best of our knowledge. The algorithm is intuitive and simple to implement, and easily incorporates salient features of the real-time nowcasting environment, such as differences in data reporting lags across series. We evaluate the algorithm’s real-time ability to establish new business cycle turning points in the United States quickly and accurately over the past five NBER recessions. Despite its relative simplicity, the algorithm’s performance appears to be very competitive with those of commonly used alternatives.
Keywords: Classification; Reference cycle; Expansion; Recession (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016300590
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:33:y:2017:i:1:p:174-184
DOI: 10.1016/j.ijforecast.2016.04.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().