Selecting exchange rate fundamentals by bootstrap
Pinho Ribeiro
International Journal of Forecasting, 2017, vol. 33, issue 4, 894-914
Abstract:
Research shows that the predictive ability of economic fundamentals for exchange rates varies over time; it may be detected in some periods and disappear in others. This paper uses bootstrap-based methods to select time-specific conditioning information for the prediction of exchange rates. By employing measures of the predictive ability over time, along with statistical and economic evaluation criteria, we find that our approach based on pre-selecting and validating fundamentals across bootstrap replications leads to significant forecast improvements and economic gains relative to the random walk. The approach, known as bumping, selects parsimonious models that have out-of-sample predictive power at the one-month horizon; it is found to outperform various alternative methods, including Bayesian, bagging, and standard forecast combinations.
Keywords: Bagging; Bumping; Combined forecasts; Economic evaluation of exchange rate models; Exchange rate forecasting (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207017300596
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:33:y:2017:i:4:p:894-914
DOI: 10.1016/j.ijforecast.2017.05.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().