Minimizing post-shock forecasting error through aggregation of outside information
Jilei Lin and
Daniel J. Eck
International Journal of Forecasting, 2021, vol. 37, issue 4, 1710-1727
Abstract:
We develop a forecasting methodology for providing credible forecasts for time series that have recently undergone a shock. We achieve this by borrowing knowledge from other time series that have undergone similar shocks for which post-shock outcomes are observed. Three shock effect estimators are motivated with the aim of minimizing average forecast risk. We propose risk-reduction propositions that provide conditions that establish when our methodology works. Bootstrap and leave-one-out cross-validation procedures are provided to prospectively assess the performance of our methodology. Several simulated data examples and two real data examples of forecasting Conoco Phillips and Apple stock price are provided for verification and illustration.
Keywords: Data integration; Prospective forecasting; Risk reduction; Residual bootstrap; Cross validation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021000613
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:4:p:1710-1727
DOI: 10.1016/j.ijforecast.2021.03.010
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().