EconPapers    
Economics at your fingertips  
 

Non-Gaussian models for CoVaR estimation

Michele Leonardo Bianchi, Giovanni De Luca and Giorgia Rivieccio

International Journal of Forecasting, 2023, vol. 39, issue 1, 391-404

Abstract: In this paper we show how to obtain estimates of CoVaR based on models that take into consideration some stylized facts about multivariate financial time series of equity log returns: heavy tails, negative skew, asymmetric dependence, and volatility clustering. While the volatility clustering effect is captured by AR-GARCH dynamics of the Glosten-Jagannathan-Runkle (GJR) type, the other stylized facts are explained by non-Gaussian multivariate models and copula functions. We compare the different models in the period from January 2007 to March 2020. Our empirical study conducted on a sample of listed banks in the euro area confirms that, in measuring CoVaR, it is important to capture the time-varying dynamics of the volatility. Additionally, a correct assessment of the heaviness of the tails and of the dependence structure is needed in the evaluation of this systemic risk measure.

Keywords: Systemic risk; Value-at-risk; Conditional value-at-risk; Heavy tails; Non-linear dependence; Copula functions; Backtesting (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021002089
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:1:p:391-404

DOI: 10.1016/j.ijforecast.2021.12.002

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:39:y:2023:i:1:p:391-404