Model combinations through revised base rates
Fotios Petropoulos,
Evangelos Spiliotis and
Anastasios Panagiotelis
International Journal of Forecasting, 2023, vol. 39, issue 3, 1477-1492
Abstract:
Standard selection criteria for forecasting models focus on information that is calculated for each series independently, disregarding the general tendencies and performance of the candidate models. In this paper, we propose a new way to perform statistical model selection and model combination that incorporates the base rates of the candidate forecasting models, which are then revised so that the per-series information is taken into account. We examine two schemes that are based on the precision and sensitivity information from the contingency table of the base rates. We apply our approach on pools of either exponential smoothing or ARMA models, considering both simulated and real time series, and show that our schemes work better than standard statistical benchmarks. We test the significance and sensitivity of our results, discuss the connection of our approach to other cross-learning approaches, and offer insights regarding implications for theory and practice.
Keywords: Forecasting; Model selection/combination; Information criteria; Exponential smoothing; Cross-learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920702200108X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:3:p:1477-1492
DOI: 10.1016/j.ijforecast.2022.07.010
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().