Forecasting South Korea’s presidential election via multiparty dynamic Bayesian modeling
Seungwoo Kang and
Hee-Seok Oh
International Journal of Forecasting, 2024, vol. 40, issue 1, 124-141
Abstract:
Forecasting a presidential election’s outcome is a long-standing topic in statistics and political science. However, a lack of historical data and a complex multiparty political system make it challenging to apply models developed so far to South Korea’s presidential election. In addition, no suitable model has been proposed to address these issues, and there are no practical means by which to forecast presidential elections in South Korea. Here, we propose a flexible Bayesian framework for forecasting election outcomes at the provincial level by incorporating abundant pre-election polls into historical data. Hilbert spaces are employed to induce a multiparty forecast. Our framework provides numerous findings worth examining, such as long- and short-term opinion trends, the effect of fundamental conditions on vote share, and systematic bias in pre-election polls. The framework is applied to the 2022 South Korean presidential election, demonstrating that our framework is promising.
Keywords: Bayesian modeling; Compositional data; Election forecasting; Politics; Pre-election polls (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207023000043
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:1:p:124-141
DOI: 10.1016/j.ijforecast.2023.01.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().