EconPapers    
Economics at your fingertips  
 

Forecasting South Korea’s presidential election via multiparty dynamic Bayesian modeling

Seungwoo Kang and Hee-Seok Oh

International Journal of Forecasting, 2024, vol. 40, issue 1, 124-141

Abstract: Forecasting a presidential election’s outcome is a long-standing topic in statistics and political science. However, a lack of historical data and a complex multiparty political system make it challenging to apply models developed so far to South Korea’s presidential election. In addition, no suitable model has been proposed to address these issues, and there are no practical means by which to forecast presidential elections in South Korea. Here, we propose a flexible Bayesian framework for forecasting election outcomes at the provincial level by incorporating abundant pre-election polls into historical data. Hilbert spaces are employed to induce a multiparty forecast. Our framework provides numerous findings worth examining, such as long- and short-term opinion trends, the effect of fundamental conditions on vote share, and systematic bias in pre-election polls. The framework is applied to the 2022 South Korean presidential election, demonstrating that our framework is promising.

Keywords: Bayesian modeling; Compositional data; Election forecasting; Politics; Pre-election polls (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207023000043
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:1:p:124-141

DOI: 10.1016/j.ijforecast.2023.01.004

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:40:y:2024:i:1:p:124-141