Outlier-robust methods for forecasting realized covariance matrices
Dan Li,
Christopher Drovandi and
Adam Clements
International Journal of Forecasting, 2024, vol. 40, issue 1, 392-408
Abstract:
This paper proposes two new approaches to improve the estimation of the coefficients of the multivariate HAR (MHAR) model with the primary purpose of improving forecast performance. A robust estimator of the covariance matrix is adopted to replace the realized covariance matrix while estimating the MHAR model. The robustness to outliers of the new estimator makes the OLS estimation scheme for the MHAR model more reliable. In addition, a robust estimation scheme is developed for the MHAR model, which is based on the multivariate least-trimmed squares method. Both approaches provide significant improvements in forecasting performance based on both statistical loss and portfolio outcomes. The forecast performance of the multivariate HARQ model can also be improved with the proposed approaches, as evidenced by robustness checks.
Keywords: Multivariate volatility; HAR; Portfolio allocation; Minimum covariance determinant; Multivariate regression; Least-trimmed squares estimator (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207023000407
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:1:p:392-408
DOI: 10.1016/j.ijforecast.2023.04.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().