Daily growth at risk: Financial or real drivers? The answer is not always the same
Helena Chuliá,
Ignacio Garrón and
Jorge Uribe
International Journal of Forecasting, 2024, vol. 40, issue 2, 762-776
Abstract:
We propose a daily growth-at-risk (GaR) approach based on high-frequency financial and real indicators for monitoring downside risks in the US economy. We show that the relative importance of these indicators in terms of their forecasting power is time varying. Indeed, the optimal forecasting weights of our variables differed clearly between the Global Financial Crisis and the recent Covid-19 crisis, reflecting the dissimilar nature of these two events. We introduce LASSO, elastic net, and adaptive sparse group LASSO into the family of mixed data sampling models used to estimate GaR and show how they outperform previous candidates explored in the literature. Moreover, equity market volatility, credit spreads, and the Aruoba–Diebold–Scotti business conditions index are found to be relevant indicators for nowcasting economic activity, especially during episodes of crisis. Overall, our results show that daily information about both real and financial variables is key for producing accurate point and tail-risk nowcasts of economic activity.
Keywords: Vulnerable growth; Quantiles; Machine learning; Forecasting; Value at risk (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207023000511
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Daily Growth at Risk: financial or real drivers? The answer is not always the same (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:2:p:762-776
DOI: 10.1016/j.ijforecast.2023.05.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().