Exchange rate predictability: Fact or fiction?
Karen Jackson and
Georgios Magkonis
Journal of International Money and Finance, 2024, vol. 142, issue C
Abstract:
The present study investigates the factors that affect the forecasting performance of several models that have been used for exchange rate prediction. We provide a quantitative survey collecting 8,413 reported forecast errors and we investigate which forecasting characteristics tend to improve forecasting ability. According to our evidence, predictions can beat random walk when certain types of models and econometric methods are used. In particular, linear specifications based on PPP outperform random walk. Furthermore, higher data frequency and longer forecasting horizon also improve forecasting performance. In this way, we identify under which conditions it is feasible to solve the ‘Meese-Rogoff’ puzzle.
Keywords: Exchange rates; Forecasting performance; Meta-analysis (search for similar items in EconPapers)
JEL-codes: C83 F31 F37 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0261560624000135
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jimfin:v:142:y:2024:i:c:s0261560624000135
DOI: 10.1016/j.jimonfin.2024.103026
Access Statistics for this article
Journal of International Money and Finance is currently edited by J. R. Lothian
More articles in Journal of International Money and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().