On least squares estimation for long-memory lattice processes
Jan Beran,
Sucharita Ghosh and
Dieter Schell
Journal of Multivariate Analysis, 2009, vol. 100, issue 10, 2178-2194
Abstract:
A flexible class of anisotropic stationary lattice processes with long memory can be defined in terms of a two-way fractional ARIMA (FARIMA) representation. We consider parameter estimation based on minimizing an approximate residual sum of squares. The method can be applied to sampling areas that are not necessarily rectangular. A central limit theorem is derived under general conditions. The method is illustrated by an analysis of satellite data consisting of total column ozone amounts in Europe and the Atlantic respectively.
Keywords: Long; memory; Fractional; ARIMA; process; Lattice; process; Maximum; likelihood; estimation; Anisotropy (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00085-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:10:p:2178-2194
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().