Optimal discriminant functions for normal populations
Hirofumi Wakaki and
Makoto Aoshima
Journal of Multivariate Analysis, 2009, vol. 100, issue 1, 58-69
Abstract:
A class of discriminant rules which includes Fisher's linear discriminant function and the likelihood ratio criterion is defined. Using asymptotic expansions of the distributions of the discriminant functions in this class, we derive a formula for cut-off points which satisfy some conditions on misclassification probabilities, and derive the optimal rules for some criteria. Some numerical experiments are carried out to examine the performance of the optimal rules for finite numbers of samples.
Keywords: 62H30; 62H20; Linear; discriminant; function; W-rule; Z-rule; Asymptotic; expansion (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00101-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:1:p:58-69
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().