Probability density estimation for survival data with censoring indicators missing at random
Qihua Wang,
Wei Liu and
Chunling Liu
Journal of Multivariate Analysis, 2009, vol. 100, issue 5, 835-850
Abstract:
In this paper, some nonparametric approaches of density function estimation are developed when censoring indicators are missing at random. A conditional mean score based estimator and a mean score estimator are suggested, respectively. The two estimators are proved to be asymptotically normal and uniformly strongly consistent. The bandwidth selection problem is also discussed. A simulation study is conducted to compare finite-sample behaviors of the proposed estimators.
Keywords: primary; 62G05 secondary; 62E20 Asymptotic normality Strong consistency Bandwidth selection Mean-squared error Missing at random (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00193-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:100:y:2009:i:5:p:835-850
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().